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ABSTRACT

The convergence of the class of direct interpolatory iterations I = for
a simple zero of a non-linear operator F in a Banach space of finite or in-
finite dimension is studied.

A general convergence result is established and used to show that if F
is entire the "radius of convergence" goes to infinity with n while if F is
analytic in a ball of radius R the radius of convergence increases to at

least R/2 with n.
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1. INTRODUCTION

We study the convergence of the class of direct interpolatory itera-

i tions I where In is of order n and n 2 3, for a simple zero of a non-
linear operator F in a Banach space of finite or infinite dimension. For

n = 2, see Traub and Wozniakowski [77a].

We establish a basic convergence theorem for In and apply it to two

k| classes of problems. If F is an entire function of growth order p, then the

“"radius of convergence" goes to infinity at least as fast as nl/p. We show

this result is sharp for all odd n and p = 1, If F is analytic in a disk of

radius R, then the "radius of convergence" increases to at least R/2 with n. i
This result is also sharp for all odd n.

The calculation of the next iterate, x - In(xi)’ requires the solution

i+1
of a polynomial operator equation of degree n-1l. In Traub and Wozniakowski

3 [77b] we consider one way in which this can be done. :
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2. INTERPOLATORY ITERATION L

We consider the solution of the non-linear equation

(2.1) F(x) =0

where F: D CIB1 - Bz and Bl’ Bz are real or complex Banach spaces of dimension
N, N= din(Bl) = dim(Bz), 1 <N <+4%, We solve (2.1) by one-point stationary
iterations without memory in the sense of Traub [64]. Let Xy be a sufficiently
close approximation to a simple zero &, i.e., F(a) = 0 and F'(a)'l exists

and is boundeq. Suppuse that thé next approximation X141 depends on the

"standard information" M on F, i.e.,

(2.2) x 1 " m(xi, M(xi;F))

i+

where ¢ is an iteration operator and
@2.3) R P = FGO,F' @, F* V@] fornz 2.

In Traub and Wozniakowski [76b] we showed that standard information is
optimal (in a sense ma&e precise in that paper) among all linear information
sets which use n evaluations. Any iteration based on (2.3) has order of con-
vergence no greater than n. This was first proved by Traub [64] and Kung and
Traub [74] for scalar problems and by WoZniakowski [74] for multivariate and
abstract problems, see also Traub and Wozniakowski [76a] who use a non-asymptotic
definition of order and derive strict lower and upper bounds on complexity. In
this paper we study the convergence of a class of iterations which use standard
information. The optimal order is achievable by an interpolatory iteration In

defined as follows:




(i) construct a polynomial vy of degree < n-1 which agrees with the

standard information on F, i.e.,

(2.4) wij)(xi) = F(j)(xi), S BGdeel

(ii) define the next approximation x as a zero of Wis wi(xiﬂ.) = 0,

i+1

with a certain criterion of its choice.

DY Sl s 3 e o s AL AR, K e £5

We shall write x

" In(xi;F) . From (2.4) we get

¥ (n-1)

(2.5) wi(x) = F(xi) + F' (x) (x-xi) + oo + ‘?'nT}")_.' (xi_) (x--xi)ﬂ'1 .

For n = 2 we obtain Newton iteration since the unique zero of w, is given by

x = x, - F' (xi)-lF(xi). Throughout this paper we assume n =2 3. For n = 2,

i+l
see Traub and Wozniakowski [77a].

Remark 2.1

Inverse interpolation can also be used in which case (2.4) is replaced by

v e =ePEap), 1=01,...01

f where g(x) = P'l(x) is the inverse operator to F. Define x, , =w, (0). The

problem of solving the "polyromial operator equation" (2.5) is then eliminated

but the derivatives of the inverse function must be computed. See Traub [64,

Appendix B and Section 11.2] for the case N < = and Brent and Kung [76] for

N = 1 and n large. 8

We deal with the character of convergence of the interpolatory iteration

| : I,. Let o be a simple zero of F, &, = "nl-a" and J = {x: |k-a|l sT}.

Define
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(2.6) A, = A (D = suplp' (@~ I E |, 3 =2,3,...
§ropn O T

whenever F(j) (x) exists. Let q be any number such that 0 < q < 1 and let

: m(%a, 1) if N = 4o
§ =
“ 1 1f N < 4o,

2 1ifN= 4
§ =
1 if N<4=>,

Theorem 2.1

If F is n-times differentiable in J, n = 3, and

An(1+q)“r“'1

2.7) bn + Aqu‘b <1,

(2.8) xj €3

then the polynomial w, has a zero in J, = {x:|k=all = qil"} for any i. Define

X, 88 any zero of v in J:l.'

Then
2.9 lim X, a6, < q.e, where

: An(lﬂ)n- l,..n- lq:l(n- 1)

q fip s = ol -
i I-An(lﬂ)n lrn lqi.(n D-Azqr‘qt

< QO V’..

sC

(2.10) e n‘: where

i+1 i,

e
i+l.n
ci.,n - A (H e, ) /(1'A2°1+1)’ 11" ci,n = Ay

o b

i Snii e L S
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R
1-a = (-l)n E;‘_ég)_ F(n) (a) (xina)n + °(|b(1"a|r)c

(2.11) x

i+
Proof
Define
(-t)3-1
(2.12) Rj(x;y) .J‘l p(j)(wt(x-y))(x-)’)j tjfl)' dt
. 0 :

for x,y € J and j = 2 and n. Assume by induction that x; € Ji' This hc;lds
for i = 0 since J0 = J. From (2.4) we get the error formula

(2.13) F(x) = w (x) + R (x3x,),

see Rall [69, p.124]. We want to show that vy has a zero in J1+1' The equa-

tion "1(") =0 in Jie1 is equivalent to F(x) = Rn(x;xi)‘ Since F(x) = F'(a) (x-0) +

Rz(x;rr) we get the equation
@.14) x=Hw E or P @ R (xix) - Ry )

We verify H(J, ,) C 35

+1° Let x € Ji+1' Then from (2.6) and (2.12) we get

i+l

IHe-all < A_lk-x, I + Azllx-allz < An(q1+1+qi)“f‘“ + Azqz(i’n)r‘z -
n.n-1
w1 Mg BT i

: i(n=1)
K | a q

r

+ Azq"qi) <q

due to (2.7). Thus H(J,, ,) € J

i+l i+1°

If N < 4= then from the Brouwer fixed point theorem (see e.g., Ortega
and Rheinboldt [70, p.161]) there follows the existence of the solution of
(2.14), X541 € J1+1° If N = +» ywe shall use the contraction mapping theorem
(see e.g., Ortegaand Rheinboldt [70, p.120]). From (2.13) and (2.14) we get

for x € Ji.+1

4
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From (2.7) we get
it @ || < nA_lbe=x, P + 24, [kec| = na_(+)™ ! 1 4 20,97 < 1.

Hence H is contractive on Ji+1 and there exists a unique solution X+l of

(2.1“) in J1+1 for any 1.

Now let N < 4+®, Setting x = X0l in (2.14) we get

2 peln-1 i(o-1) 1+1
sy SAglkyox P + ael) <A 4™ T (egqtey) + A9 Tey .

Thus LR < q e where 9 is given in (2.9) and 9, S q due to (2.7). Hence
1im e, = 0. Returning to (2.14) we have
i
n ®i+1.n
€y < ci,nei where Ci,n = An(l-l-—e—i—) /(1-A2e1+1).
n=-1
Since ci,n is bounded, 1!1“_1/e1 < ci,nei - 0. Hence lim ci,n = An which

proves (2.10). Next observe that

nd
Rj(x1+1;xi) = -(-%,L P (a) (xi_--c't)‘1 + 0(“"1'°'|P)'

Thus (2.14) for x = X441 gives

-1 M)
X, gm0 D" F (! E—;—,.-@)-(xi-a)n + o('kﬂ_l-a” - "xi-a]r)

which proves (2.11) and theorem 2.1. s
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Remark 2.2

For N = + we proved that there exists a unique zero of v in Ji for any
i. For the multivariate case, N < +®, this need not be true. The next ap-

proximation x can be defined as any zero of v in J,. However, it is easy

i
has a unique zero in J T ]

i+l

to show that for large i the polynomial wy

Remark 2.3

The computation of x, requires the solution of the "polynomial operator

i+1

equation” w 1(") = 0. There are a number of ways for dealing with the problem
of solving this equation numerically. One is to apply a number of Newton
iterations (say k) starting with x5 and taking the kth Newton iterate as X1
'l‘rgub and WOz'nialfowski [77b] study the convergence and complexity of such

"Interpolatory-Newton" iterations. L |

Remark 2.4
1f we additionally assume that F is (n+1)-times differentiable in J then

using the same technique it may be shown that

X, -0 = (-1)“1-"(0);‘1-3 F™ () (x-)" + 8 i

i+

1 .
where |6, |l = cl| x;-a|f"" and ¢ = cay.A A LD o

In theorem 2.1 we assume that X € J. Note that the radius of J depends

on F and q. For a given problem F one can ask what is the optimal value of q

.

which maximizes ™. In the next section we deal with that problem for any

value of n.

Yo




3. BALL OF CONVERGENCE OF In

In the previous section we proved that if F is sufficiently regular and
if an initial approximation X belongs to the ball J then the interpolatory
iteration In converges. Of course we would like to have J as large as possible.

To make this idea more precise we define a ball of convergence as follows.

Definition 3.1

% * *
A ball e Jn(F) = {x: |k—a|l< Th} where Th = Fh(F) is said to be a ball
of convergence or the interpolatory iteration In for a function F if for any

X € Jn the sequence x = In(xi;F) converges to the solution o and for every

i+l

¥*
e > 0, there exists x  such that Iko-a“ < Th + € and X1 = In(xi;F) is not

0

*
convergent to a. Th is called the radius of the ball of convergence or the

radius of convergence for short. 2]

Of course the ball of convergence can be defined for any iteration & in
the same way. In fact it is sometimes more convenient to have the concept of

domain of convergence D where o € D and starting from any point X € D the

sequence Xx = Q(xi;F) converges to a. In general it is very hard to find D

i+l
and therefore we restrict ourselves only to the case when D is a ball with
center at a; compare Ortega and Rheinboldt [70, p.236].

Note that if F is a polynomial of degree < n~1 then the interpolatory poly-
nomial Wy = F and we get convergence for any Xqe This means ﬁ: = 4o and
Jh(F) - Bl' To exclude this exceptional case we shall assume throughout this

section that F is not a polynomial.

Recall that F: D - Bz, D C:B1 and
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G.1) A =A (= sup |Fr@ PE) n=2,3,...
n n x€I(r) n!

for r such that J(r) = {x: |k-a|| =x} coD.

Define a function g(r) = g(r,q) as

An (r) (14q) nrn- 2

q

3.2) g(x) = A+ Ay(r)qrs

where Gn and § are defined in Section 2. Note that g is strictly increasing and
* *
g(0) = 0, g#®) = +», Thus there exists a unique r = r (q) > 0 such that
%
g(r ) = 1. Let
* %
(3.3) r = max r (9.
0<g<1
%*
Applying theorem 2.1 with the q which maximizes r we can define the radius

*
Fin (2.7) as T = rn-e for any sufficiently small positive €. From theorem 2.1

%
the radius I‘n of the ball of convergence Jn(F) can be bounded below by
34y T 2%
(3.4) P

% *
We shall see that for some problems I"n s r, for large n which indicates that
theorem 2.1 is asymptotically sharp. Furthermore we shall show that for some
%*
problems T increases with n or even tends to infinity with n.

We consider two cases depending on the domain of F as follows:

(i) F is an entire function, i.e., D = 131 and Bl’ 32 are Banach spaces

over the complex or real field.

(i1) F is an analytic function in a finite domain D = {x: [k-af| < R}

where 0 < R < 4=,

P T T By TR



Case (i). Let F be an entire function. Thus

3.9 F@ = ) FFP@aal, wes,.

Definition 3.2

i=1 ?

We say F has the growth order p, 0 < p <+« and the type 7, T > 0, of its

order if 1 | 3
= | 4
D@l s,,(;_*) : E
gt ! E
for a constant M and i = 0,1,... . o

sake

Compare with the definition for the scalar case in Hille [62]. For the

of simplicity we do not consider the growth order p = 0 or p = +=, However,

it is possible to analyze such cases as well.

Define
1

B r
(3.6) £(z) = MAGT) e, ze(.

Then

3.0 P s £D (k-old

for x € Bl and j = 0,1,... .

there exists a constant < > 0 such that

i=1

We need bounds on the growth of f(j). From Hille (62, p.183] follows that

- v TR : : *
a Ry e s g -

(3.8) max |[f(z)]| = £(r) < clrp/zexp(%rp), ¥r > 0.

z|s
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Lemma 3.1

Let u = max(0, 1-1/p). Then

1
g(m) O p.n
3.9 =& £(2%) .
s (n) P
Proof
Note that

i
f(n) (r) = MCn c 17

i=0 Han

1=-v
where v = 1/p, C = 7~ and 6> [(n-f—i) ]

It may be shown that
! = i) nt s 2™ a1, w1,
n :
If p <1 then ¢

f(n) ) . c®
ni (n'.) Ve

f(r)

which proves (3.9) with y = 0. Assume p 21, Then y = l-v > 0 and

< [n! 2““']"’. Hence

g
__..Ll .(__2{7 £(2%r)
(nl)

ci,n

which proves (3.9).

We are ready to prove the follow’ : theorem.

ok
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Theorem 3.1 é

If F has the growth order p and the type T of its order and if ,

14+p/ 2
(3.10) q=q_ = {(czn) ’ exp(zup'rczn/p) }'lc3

where <, and ¢y are any positive numbers such that

1
=2
(3.11) c22“'°-r exp(2c22“'p'r+1) Kiie 2P /(CIGTZ/P) |

and p, § and c, are defined as above then theorem 2.1 holds with

(3.12) T=T = (czn)l/p(1+o(1)), ¥n. )

Proof
We want to estimate g defined by (3.2). Since o o(n), Gn = 1 in (2.7) and

(3.2) for large n. After some algebraic manipulations we get from Lemma 2.2

3 n,
p (119 uP p_n £2 1 ).
8((c2n) ) =0 {czz T exp(2c22 1)} (n'e“)lfp + 21[9 6c1c3.

NV e g

By Stirling's formula

SRR s

n'.en = nm'l/z.ﬁ (14+0(1))

f and due to (3.11), g((czn) Y ’y <1 for large n. This means that (2.7) holds .

‘ o Bt (czn) 1/"(1+o(1.)) for every n. a

Theorem 3.1 states a "type of global convergence" of the interpolatory itera-
tion ’h' The iteration Iu is convergent for T‘n == (czn)l/p which tends to infinity

with n and the growth of the radius depends on the growth order p.
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From (3.3) and (3.4) we get

Corollary 3.1

%
If F has the growth order p then the radius I‘n of the ball of conver-

gence of tne interpolatory iteration In satisfies
* Yo
(3.13) Tn > (czn) (1+0(1)), w¥n.
We want to prove that (3.13) is sharp for n odd and p = 1.

Theorem 3.2

There exists a problem F of growth order p = 1 for which (3.13) is sharp

for all odd n.

Proof
Let

(3.14) F(x) = ex-a, a>0,

for real x. The growth order p and the type T are now equal to unity.
Corollary (3.1) we get

*

T'n(F) 2 c2n(1+o(l))

where <, exp(2c2+1) < 1 which means ¢, < 0.23, We shall show that

2

(3.15) r:(r) < ¢, n(1+o(1))

for n odd where ca

Let w be the interpolatory polynomial of degree < n-1 such that

exp(1+c4) > 1 which means <, > 0,28.

w(j)(xo) - D (xp) for § = 0,1,...,n-1. Then

*0
w(x) = e Sn_l(x-xo) - a

From
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Sk(x) 13 ’;—. . -%FEL e tdt,
i-o L] 0 L]

see Newman and Rivlin [72]. From this it follows that SZk does not have real
zeros and SZk-l does have a unique real zero which we label by Zyp-1° It is

known that

z = . c5(2k-1)(1+o(1)), vk,

2k=-1
where f:5 exp(1+c5) =1, Cg = 0,28, see Szegg [24) and Rosenblum [57]. Observe

that Sik(x) = SZk-l(x) which gives o

Z
- _ Pk
et S (X = Sy 2oy 1) = GOt °

We want to find x,. such that the polynomial w does not have real zeros which

0
means that the interpolatory iteration is not defined at X and X, £ Jn(l-‘).

The equation w(x) = 0 is equivalent to

-xo
sn_l(x-xo) = ge "

Let x, = ¢c,n. Then
-x z -c,n
(3.16) sn_l(x-xo) - ae 0 Z(Tn:-%? - ae 4 -
2q-2] o2 2 e |
Note that 5-1-[‘:‘-‘!,_—1__)—!- - cse(l+o(1)) and Jae = e (l4+o0(l)). Since

cge = exp(-cs) and c:5 < <, then (3.16) is always positive for large n. Hence
(3.15) and theorem 3.2 are proven. ]
L3
However, it may be shown that \"n(?) = 4o for n even for the problem (3.14).

The sharpness of (3.13) for n even or o # 1 is open.
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Case (ii). Let F be analytic in D where

D= {x: "x-a||< R}, O0<R<+=,

This means that for any sufficiently small € > 0 there exists M = M(F;e¢) such

that

(1)
(3.17) -ni-—i,f-‘-’)-u-suc1 where c-i}‘-, §ngn

Theorem 3.3

If F satisfies (3.17) and if
(3.18) q= -—L
' 9% © Mcn
then theorem 2.1 holds with

(3.19) T = rn--l—zﬁ(n-e) (1+o(1)).

Proof
Define
@®
s
f(z) =M ) ! = 1_’::2 for |z| s% = R-e¢.
i=Q

From (3.17) we get

. i
3.20 [FP @ 5 €D (|healp = —LLIE
(1-c|k-alp *1

for any x such that |k-a|| < R-¢ and 1 = 2,3,... .

‘;f:"! o '1"5"'<R-¢)- From (3.2) and (3.20) we have

g(x) = o((ﬁ{-)n N -9 <1

- =
Let v rn




for large n. This means that (2.7) holds for T = T = 1%‘-(n-«)(mu))

for all n. [ ]

T S ARy = VL

Remark 3.1
It is possible to get a slightly sharper estimate of I‘n in (3.13). It

§ may be shown that
H ' In(nc, ) 14
i - R“. 6 3
. I"n 2 (- 70 (1+o(1)9 -

where ¢

. cs(M,C) is a positive constant. 8

Since ¢ can be arbitrarily small, theorem 3.3 states that T‘n E-Z-I-R for

large n. This means that the radius T‘n is about one half of the domain radius

R. Once more this gives a "type of global convergence". From (3.4) we get

Corollary 3.2
#
If F satisfies (3.17) then the radius T‘n of the ball of convergence of

the interpolatory iteration In satisfies

(3.21) T‘:Z%’R(Ho(l)). . ®

We now show that, in general, (3.21) is sharp for n odd.

Theorem 3.4

There exists a problem F for which (3.21) is sharp for all odd n.

Proof

| Let

| (3.22) PO =7i=-1, o0<c<1
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for real x such that |x| <R = -(13 We shall show that

Y‘*F Sl dd
n() ER, ¥ n odd.

The interpolatory polynomial w is given by

n-1
ct exl - 1, n odd

i+1
(1~Cx0)

w(x) = .

i=0

The equation w(x) = 0 is equivalent to
C(x-xo) 2
(3.23) -—1:-&;- = Cx.

1
Let X, = 51(-: - ER Then (3.23) becomes

(3.24) (2Ccx-1)" = cx.

It is straightforward to verify that (3.24) does not have zeros in [-R,R].

This implies X £ Jn(l') and

1":(1') < -;"-R, ¥ n odd. [

*
However, it may be shown that l"n(l?) = R for n even. Thus the sharpness of

(3.21) is open for n even.
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